3,756 research outputs found

    Time-resolved lidar fluorosensor for sea pollution detection

    Get PDF
    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described

    The Most Magnetic Stars

    Get PDF
    Observations of magnetic A, B and O stars show that the poloidal magnetic flux per unit mass has an upper bound of 10^-6.5 G cm^2/g. A similar upper bound is found for magnetic white dwarfs even though the highest magnetic field strengths at their surfaces are much larger. For magnetic A and B stars there also appears to be a well defined lower bound below which the incidence of magnetism declines rapidly. According to recent hypotheses, both groups of stars may result from merging stars and owe their strong magnetism to fields generated by a dynamo mechanism as they merge. We postulate a simple dynamo that generates magnetic field from differential rotation. The growth of magnetic fields is limited by the requirement that the poloidal field stabilizes the toroidal and vice versa. While magnetic torques dissipate the differential rotation, toroidal field is generated from poloidal by an Omega dynamo. We further suppose that mechanisms that lead to the decay of toroidal field lead to the generation of poloidal. Both poloidal and toroidal fields reach a stable configuration which is independent of the size of small initial seed fields but proportional to the initial differential rotation. We pose the hypothesis that strongly magnetic stars form from the merging of two stellar objects. The highest fields are generated when the merge introduces differential rotation that amounts to critical break up velocity within the condensed object. Calibration of a simplistic dynamo model with the observed maximum flux per unit mass for main-sequence stars and white dwarfs indicates that about 1.5x10^-4 of the decaying toroidal flux must appear as poloidal. The highest fields in single white dwarfs are generated when two degenerate cores merge inside a common envelope or when two white dwarfs merge by gravitational-radiation angular momentum loss.Comment: accepted by MNRAS 8 pages, 3 figure

    Mechanisms producing different precipitation patterns over north‐eastern Italy: insights from HyMeX‐SOP1 and previous events

    Get PDF
    During the first HyMeX Special Observation Period (SOP1) field campaign, the target site of north‐eastern Italy (NEI) experienced a large amount of precipitation, locally exceeding the climatological values and distributed among several heavy‐rainfall episodes. In particular, two events that occurred during the last period of the campaign drew our attention. These events had common large‐scale patterns and a similar mesoscale setting, characterised by southerly low‐level flow interacting with the Alpine orography, but the precipitation distribution was very different. During Intensive Observing Period IOP18 (31 October–1 November 2012), convective systems were responsible for intense rainfall mainly located over a flat area of the eastern Po Valley, well upstream of the orography. Conversely, during IOP19 (4/5 November 2012), heavy precipitation affected only the Alpine area. In addition to IOP18 and IOP19, the present study analyses other heavy‐precipitation episodes that display similar characteristics and which occurred over NEI during the autumn of recent years. A high‐resolution (2 km grid spacing) non‐hydrostatic NWP model and available observations are used for this purpose. The two different observed precipitation patterns are explained in terms of interaction between the impinging flow and the Alps. Depending on the thermodynamic profile, convection can be triggered when the impinging flow is forced to rise over a pre‐existing cold‐air layer at the base of the orography. In this situation a persistent blocked‐flow condition and upstream convergence are responsible for heavy rain localized over the plain. Conversely, if convection does not develop, flow‐over conditions are established and heavy rain affects the Alps. Numerical parameters proposed in the literature are used to support the analysis. Finally, the role of evaporative cooling beneath the convective systems is evaluated. It turns out that the stationarity of the systems upstream of the Alps is mainly attributable to persistent blocked‐flow conditions, while convective outflow slightly modifies the location of precipitation

    The open cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution

    Full text link
    Recent studies of white dwarfs in open clusters have provided new constraints on the initial - final mass relationship (IFMR) for main sequence stars with masses in the range 2.5 - 6.5 Mo. We re-evaluate the ensemble of data that determines the IFMR and argue that the IFMR can be characterised by a mean initial-final mass relationship about which there is an intrinsic scatter. We investigate the consequences of the IFMR for the observed mass distribution of field white dwarfs using population synthesis calculations. We show that while a linear IFMR predicts a mass distribution that is in reasonable agreement with the recent results from the PG survey, the data are better fitted by an IFMR with some curvature. Our calculations indicate that a significant (~28%) percentage of white dwarfs originating from single star evolution have masses in excess of ~0.8 Mo, obviating the necessity for postulating the existence of a dominant population of high-mass white dwarfs that arise from binary star mergers.Comment: 5 pages, 2 color Postscript figures. Accepted for publication in MNRA

    High-mass star formation in southern disk galaxies

    Get PDF
    As part of a major study of the physical processes of star formation and the evolution of galactic discs, the detailed distribution of high-mass star formation within southern late-type spirals and Magellanic-type galaxies is being measured by means of narrow-band imaging in Ha and the continuum, spectroscopic studies of prominent HII regions identified in the Ha images, and by radio mapping in neutral hydrogen and the continuum. The radio mapping will be undertaken with the Southern Hemisphere's first large, multi-frequency synthesis array, the Australia Telescope. Some optical imaging and spectroscopic data has already been acquired; the optical data and some preliminary results are described

    Bimodules and branes in deformation quantization

    Full text link
    We prove a version of Kontsevich's formality theorem for two subspaces (branes) of a vector space XX. The result implies in particular that the Kontsevich deformation quantizations of S(X∗)\mathrm{S}(X^*) and ∧(X)\wedge(X) associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet's recent paper on Koszul duality in deformation quantization.Comment: 40 pages, 15 figures; a small change of notations in the definition of the 4-colored propagators; an Addendum about the appearance of loops in the L∞L_\infty-quasi-isomorphism and a corresponding change in the proof of Theorem 7.2; several changes regarding completions, when dealing with general A∞A_\infty-structure

    Superconducting Superstructure for the TESLA Collider

    Get PDF
    We discuss the new layout of a cavity chain (superstructure) allowing, we hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. We present mainly computations we have performed up to now and which encouraged us to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page

    Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders

    Get PDF
    Several models predict the existence of heavy colored resonances decaying to top quarks in the TeV energy range that might be discovered at the LHC. In some of those models, moreover, a sizable charge asymmetry of top versus antitop quarks might be generated. The detection of these exotic resonances, however, requires selecting data samples where the top and the antitop quarks are highly boosted, which is experimentally very challenging. We asses that the measurement of the top quark charge asymmetry at the LHC is very sensitive to the existence of excited states of the gluon with axial-vector couplings to quarks. We use a toy model with general flavour independent couplings, and show that a signal can be detected with relatively not too energetic top and antitop quarks. We also compare the results with the asymmetry predicted by QCD, and show that its highest statistical significance is achieved with data samples of top-antitop quark pairs of low invariant masses.Comment: 20 page

    V405 Aurigae: A High Magnetic Field Intermediate Polar

    Full text link
    Our simultaneous multicolor (UBVRI) circular polarimetry has revealed nearly sinusoidal variation over the WD spin cycle, and almost symmetric positive and negative polarization excursions. Maximum amplitudes are observed in the B and V bands (+-3 %). This is the first time that polarization peaking in the blue has been discovered in an IP, and suggests that V405 Aur is the highest magnetic field IP found so far. The polarized flux spectrum is similar to those found in polars with magnetic fields in the range B ~ 25-50 MG. Our low resolution circular spectropolarimetry has given evidence of transient features which can be fitted by cyclotron harmonics n = 6, 7, and 8, at a field of B = 31.5 +- 0.8 MG, consistent with the broad-band polarized flux spectrum. Timings of the circular polarization zero crossovers put strict upper limits on WD spin period changes and indicate that the WD in V405 Aur is currently accreting closely at the spin equilibrium rate, with very long synchronization timescales, T_s > 10^9 yr. For the observed spin to orbital period ratio, P_{spin}/P_{orb} = 0.0365, and P_{orb} ~ 4.15 hr, existing numerical accretion models predict spin equilibrium condition with B ~ 30 MG if the mass ratio of the binary components is q_1 ~ 0.4. The high magnetic field makes V405 Aur a likely candidate as a progenitor of a polar.Comment: To appear in The Astrophysical Journal, September 1 Issue (2008), 9 pages, 10 figure
    • 

    corecore